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Optimization, Statistics, and Uncertainty Analysis can be 
used to help find best locations for Tsunami Sensors
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Comparison between numerical results and field data (II)

Model results depend on Bathymetry

From Liu et al., 
Science, 2005
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Possible Applications of 
Optimization/Uncertainty Analysis 

to Tsunami  or Other Wave Analysis

1. Estimate spatially distributed bathymetry using 
limited number of point measurements of 
water depth plus wave information.

2. Tsunami warning sensors—where to locate 
tsunami sensors and how many to install

3. Design of breakwaters
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Focus of Methods

Nonlinear optimization problem (e.g. 
bathymetry identification)

• Computationally expensive (costly) 
simulation models
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Optimization for Calibration
(e.g for Bathymetry Estimation)

• Our goal is to find the

minimum of f(x)

where x є D
• .
• Let Fmax be the maximum number of function 

evaluations (e.g. simulations)
• We want Fmax to be small   because f(x) is 

“costly” to evaluate

This can be a 
measure of 
error between 
model 
prediction and 
observations

X can be parameter 
values (e.g. bathymetry)
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What you learned in Calculus about 
Optimization

objective

Decision variable (e.g. parameter value)

A
t m

inim
um

 
point

M
any optim

ization m
ethods have traditionally focused on derivatives.
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Goal: Derivative-Free Optimization of Costly, 
Black Box, Nonconvex Simulation Models

• For some complex simulations 
derivatives are unavailable 
– because they cannot be accurately 

computed sufficiently quickly or 
– because of lack of source code.
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Goal: Derivative-Free Optimization of Costly, 
Black Box, Nonconvex Simulation Models

• Costly functions f(x) require a substantial 
amount of computation (minutes, hours, 
days) to evaluate the function once.

• Our method seeks to minimize number of 
costly function evaluations.
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Goal: Derivative-free Optimization of Costly, 
Black Box, Nonconvex Simulation Models

• Derivative-based optimization methods 
stop at local minima instead of 
searching further  for the global 
minimum.

• For black box functions, we don’t know 
if the function is nonconvex or convex.
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Global versus Local Minima
Multi-Modal Problems have Multiple local minima

F(x)

X (parameter value)

Local minimum

Global minimum

Objective 
function
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Function Approximation Methods

• A function approximation R(x) to a 
continuous function f(x) is also called a 
“response surface model” or a “surrogate 
model”.

• We use radial basis functions for our 
function approximation, but other methods 
for non-convex surfaces could also be 
used.
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Why Use Function 
Approximation Methods?

• A function approximation  R(x) can 
reduce the number of points at which 
we do a simulation to evaluate f(x),
and thereby significantly reduce 
computational cost.

.
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Experimental Design with Symmetric 
Latin Hypercube (SLHD)

• To fit the first function approximation we 
need to have evaluated the function at 
several points.

• We use a symmetric Latin Hypercube 
(SLHD) to pick these initial points.
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x (parameter value-one dimensional example)

Objective

Function

f(x)

measure 
of error

One Dimensional Example of Experimental Design 
to Obtain Initial Function Approximation

Costly Function Evaluation 
(e.g. over .5 hour CPU time for one evaluation).
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x (parameters)

f(x)

Function Approximation with Initial 
Points from  Experimental Design

In real applications x is multidimensional since there are many 
parameters (e.g. 10).
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x (parameter value)

f(x)

Update in Function Approximation with New Evaluation 

Update done in each iteration for function 
approximation for each algorithm expert.

Function Approximation is a guess of  the  function value of 
f(x) for all x.

new
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Example Application:
Optimization of Calibration of 

Groundwater Bioremediation Model

Pradeep Mugunthan,
Christine Shoemaker

Rommel Regis

Published in Dec. 2005 in 
Water Resources Research

from my NSF grant “Improving Calibration, Sensitivity and Uncertainty Analysis of 
Data-Based Models of the Environment” from Engineering Directorate
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Engineered Bioremediation of 
Groundwater Contamination  by Injection 

of Hydrogen Donor and Extraction

Injected Donor promotes degradation of chlorinated ethenes 
by providing hydrogen.

Groundwater decontamination can cost hundreds of millions 
of dollars at a single site so optimization is important.
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Objective Function

• Objective function for calibration to be 
optimized is  
– sum of squared errors or a related function  
– based on the difference between data and the 

corresponding model prediction.
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Optimization of Calibration of 
Groundwater Model

• Evaluating the objective function involves 
numerical solution of a system of partial 
differential equations by finite difference 
methods.

• Optimization applied to two cases: 
– hypothetical- at least 8 minutes/simulation 
– field data application- 3 hours/simulation
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Algorithms Used for Comparison of 
Optimization Performance on Calibration

• Stochastic Greedy Algorithm
– Neighborhood defined to make search global
– Neighbors generated from triangular distribution around current 

solution.  Moves only to a better solution.
• Evolutionary Algorithms

– Derandomized evolution strategy DES with lambda = 10 and b1 = 
1/n and b2 = 1/n0.5 (Ostermeier et al. 1992)

– Binary or Real Genetic algorithm GA, population size 10, one point 
cross-over, mutation probability 0.1, crossover probability 1

• RBF Function Approximation Algorithms
– RBF Gutmann- radial basis function approach, with cycle length 

five, SLH space filling design
Global Stochastic RBF-Cornell radial basis function approach

• FMINCON
– derivative based optimizer in Matlab with numerical derivatives

• 10 trials of 100 function evaluations were performed for heuristic 
and function approximation algorithms for comparison



23

Comparison of Algorithm Performance on 
Hypothetical Aquifer – CNS

Experimental Design for RBF 
algorithms gets over at 28

Objective

Function
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Mean and Standard deviation of best solution 
produced after 100 function evaluations –

Hypothetical Example

•Algorithm with a lowest mean and lowest standard deviation is 
desirable 

•Based on 10 trials
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Real Field Site: Alameda Field Data

• The next step was to work with a real field 
site with DOD data. 

• Running the simulation model takes about 
2.5 hours for one run of the chlorinated 
ethene model at this site because of the 
nonlinearities in the kinetics equations.
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Numerical Set-up for 
Simulation 

• 3-D problem with 8 
layers

• Finite difference grid 
with 17Cx41R

• Constant head of 21’ up 
gradient

• No flux boundaries 
along columns on either 
side

• Active boundary down 
gradient

• About 4800 nodes

65 ft (22m)

No flowNo flow

h = 21’ (6.4 m)

flow

Numerical set-up for simulation

17
1 

ft 
(5

2m
)
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Mean, max, and min of best solution produced 
after 100 function evaluations – CNS

•Based on 3 trials

•Algorithm with a lowest mean and least spread is desirable 

Range of Objective Values for CNS Objective 
Function at Alameda field site - Mean, min and max 

are shown for each algorithm
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Conclusions on Bioremediation 
Example

• Our function approximation algorithm 
generally outperformed the alternative 
algorithms considered. 

• This performance was based on a limited 
number of function evaluations.

• The function approximation algorithm was 
robust in that it had very few bad results 
out of 3 or10 trials.
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Part II: Uncertainty Analysis

• All models make predictions that are less 
than perfect.

• Uncertainty analysis seeks to quantify the 
uncertainty in model predictions

• Examples would include 
– giving confidence limits or 
– giving the probability that the predicited

quantity will exceed a threshold
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Bayesian Uncertainty Analysis Using 
Function Approximation for 

Computationally Expensive Simulation Models

C. Shoemaker  and D. Ruppert- PIs
N. Blizniouk (lead author)

R. Rommel, S. Wild, & P. Mugunthan
(submitted paper)

NSF Grant from Mathematical Sciences
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Calibration and Uncertainty 
Analysis

• We are interested in the relationship between 
data used to calibrate a model and uncertainty.

• Goal of our project is to assess the uncertainty in 
calibrated parameter values and in model 
outputs.

• The procedure combines our optimization and 
function approximation  procedures with 
Bayesian Analysis.
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How Do HydrologistsTypically
Calculate Uncertainty?

Most widely used method is “GLUE” which:
• Is  more computationally demanding than 

the method we will propose here.
• Is not based on rigorous statistical theory.
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Markov Chain Monte Carlo (MCMC)

• This is a statistically rigorous way of 
computing uncertainty.

• It generates “posterior" multivariate 
probability density functions (pdf) for each 
parameter and for model output.

• It requires at least 10,000 simulations to 
get  “convergence” and hence is not  
feasible for computationally expensive 
functions.
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Our Method for
Uncertainty Analysis

• Is based on statistically rigorous theory.
• Is much less computationally demanding 

than traditional MCMC or GLUE
• Is based on using a function 

approximation of the likelihood function to 
do the MCMC.
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Our Objective Function

• The optimization objective is the likelihood 
function.

• The likelihood function includes the basic 
parameters as well as transformations to 
convert non normal random variables into 
normal.
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We approximate the 
Likelihood Function

Objective 

(Likelihood)

Important 
Optima

Parameter value (showing one dimension only)
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Role of Optimization

We use our optimization search to find the 
global maxima and important  local 
maxima of likelihood function.

• We build a function approximation of the 
objective function based on the 
simulations done in the optimization 
search plus additional simulations.
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Use of Function Approximation in 
MCMC

• We then apply MCMC (Markov Chain 
Monte Carlo)  to the function 
approximation of the likelihood function 
– to obtain the joint pdf (probability density 

function) of the parameter values 
– requires 10,000+ function evaluations of the 

function approximation so takes little 
computational time



39

•There is a chemical spill of mass M into a long narrow channel of 
water at both locations marked in red.

•The system is described by advection diffusion equation.

•We want to estimate the  mass M, the time t and location L of the 
second spill,  and the diffusion coefficient D, which are the model 
parameters.

•The output from the model we want is average pollutant 
concentration over time at the end of the channel.

Application: Diffusion of Chemical Spill in Channel
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Numerical Results on Chemical 
Spill Problem

• The following slides show numerical results.
• The solid line is the true value of the marginal  

pdf of the parameter distribution.
• The colored line shows the marginal pdf 

obtained by our method (MCMC on the function 
approximation of the likelihood function).

• There are multiple RBF dashed lines for different 
approximations.
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Estimates of the marginal posterior densities (pdf) obtained by 

a) (solid line) exact joint posterior obtained from conventional 
MCMC Analysis with 10,000 function evaluations and

b) (dashed lines)  with our function approximation method with 
150 function evaluations. One graph for each parameter.
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Hence we obtained with 150 function evaluations and  with 
function approximation densities that are very similar to  
those obtained with 10,000 function evaluations and 
conventional Bayesian statistics which is over a 

60 fold reduction in computational demands.
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Uncertainty Analysis of Model Output

• Typically what we really want to know is 
the uncertainty in the model predictions 
(e.g. “output”)

• The following shows the comparison of the 
uncertainty of the prediction of average 
pollutant concentrations using 
– a) our function approximation method with 

150 function evaluations and 
– b) conventional MCMC Bayesian Analysis.
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Estimates of the posterior density of the OUTPUT, 
which is  average concentration of the pollutant at

fixed location over time .

Comparison 

Once you have the pdf, you can compute mean, variance, confidence 
intervals, probability of exceeding a threshold, etc.
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Again we got excellent agreement between 
our approach with 150 evaluations and 

the conventional approach with 10,000 evaluations.

Output Comparison
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Significance of Results

• To obtain the pdf by traditional MCMC requires 
10,000 or more “costly function evaluations.

• These results indicated we were able to get 
good results with much less computational effort 
by
– Doing 150 “costly” function evaluations and then 

fitting a function approximation to the likelihood 
function and

– Evaluating  10,000 points on the function 
approximation surface with the MCMC
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What Have We Achieved for 
Uncertainty Analysis?

• Applied modern statistical tools to 
calibration of environmental engineering 
models, including transformations.

• Implemented a Bayesian method of 
uncertainty analysis

• Substantially reduced (by factor of 60) the 
number of evaluations of the 
computationally expensive environmental 
model.
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Overall Talk Summary
• Computationally expensive, multimodal  

functions are an important class of optimization 
problems.  

• Function Approximation Optimization (FAO) 
appears to be promising for global optimization 
of computationally expensive functions.

• FAO can potentially alo8tOlObutears ) 
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Review: Possible Applications of 
Optimization/Uncertainty Analysis 

to Tsunami  or Other Wave Analysis

1. Estimate spatially distributed bathymetry 
(optimization for calibration)

2. Tsunami warning sensors —where to 
locate tsunami sensors and how many to 
install (design optimization)

3. Design of breakwaters (design 
optimization)
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The End


